
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0371249 A1

CHILAKAMARRI et al.

US 20160371249A1

(43) Pub. Date: Dec. 22, 2016

(54)

(71)

(72)

(21)

(22)

(60)

DECONSTRUCTING DOCUMENTS INTO
COMPONENT BLOCKS FOR REUSE IN
PRODUCTIVITY APPLICATIONS

Applicant: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Inventors: Pradeep CHILAKAMARRI, Seattle,
WA (US); Bernhard S.J.
KOHLMEIER, Seattle, WA (US);
Bjorn OLSTAD, Oslo (NO): Ashok
KUPPUSAMY, Issaquah, WA (US)

Appl. No.: 15/087,355

Filed: Mar. 31, 2016

Related U.S. Application Data
Provisional application No. 62/182,990, filed on Jun.
22, 2015.

100

Publication Classification

(51) Int. Cl.
G06F 7/27 (2006.01)
G06F 7/30 (2006.01)

(52) U.S. Cl.
CPC G06F 17/2705 (2013.01); G06F 17/30569

(2013.01); G06F 17/300II (2013.01); G06F
17/30575 (2013.01)

(57) ABSTRACT
Documents can be deconstructed into component blocks for
reuse in productivity applications using a document shred
der. The document shredder can identify specific objects
within a source document that are likely to be reused,
replicate the objects, and store the objects, or component
blocks, separate from the Source document. The productivity
application can access the objects and present these objects
to a user of the productivity application for easy insertion
into the user's document. The component blocks, or iden
tified relevant objects can be from document sources of
previously generated content from a same or different author
than the user of a productivity application.

()

Receive command for viewing
Selected relevant document

Obtain component objects of the
Selected document

Display component objects

Receive selection of one or more of
the component objects

insert selected component objects
into document

04

05

Patent Application Publication Dec. 22, 2016 Sheet 1 of 14 US 2016/0371249 A1

00

O

Receive command for viewing
Selected relevant document

Obtain component objects of the
selected document

Display component objects

Receive selection of one or more of
the component objects

insert selected component objects
into document

FIG. 1

O2

03

04

05

Patent Application Publication Dec. 22, 2016 Sheet 2 of 14 US 2016/0371249 A1

200

2O

identify pre-defined object types
within source document

Replicate objects identified from
the Source document

Store the replicated objects

2O2

FIG 2

302

30 client request?, all server
Reusable objects of
Source document

Source Shredded
documents A objects

FG. 3

Patent Application Publication Dec. 22, 2016 Sheet 3 of 14 US 2016/0371249 A1

405

400 403

--A-/- 401
File Horne Sert Design New contoso sales mend C.B. we

FG. 4B

Patent Application Publication Dec. 22, 2016 Sheet 4 of 14 US 2016/0371249 A1

3.
s

s 8.
&

: s

wo

s
s

Cs
S.
g

E e
3. s O

wer
3.

C 8

- - - - -2 :

c
38

; g.
| a

s/1

Patent Application Publication Dec. 22, 2016 Sheet 5 of 14 US 2016/0371249 A1

x: w

453 F.G. 4D

sissississsssssssss

463 F.G. 4E

Patent Application Publication Dec. 22, 2016 Sheet 6 of 14 US 2016/0371249 A1

s 5 c
vs.
vs.

H

c
8
C

Patent Application Publication Dec. 22, 2016 Sheet 7 of 14 US 2016/0371249 A1

472

Sales Overview Metrics

Visualizations

Sales Overview Metrics

Visualizations

463 FG, 4H.

US 2016/0371249 A1 Dec. 22, 2016 Sheet 8 of 14 Patent Application Publication

US 2016/0371249 A1 Dec. 22, 2016 Sheet 9 of 14 Patent Application Publication

S "?INH
/*- -^,

|??£ ? |33?Au3S
--&--------

isenbau

~---.*

Patent Application Publication Dec. 22, 2016 Sheet 10 of 14 US 2016/0371249 A1

Processing System

Storage System

Software

620
Productivity
application

Network/Communications
interface
640

User interface System 630

Mouse Keyboard Display
63. 632 635

Touch input Motion
device input device
633 634

F.G. 6

Software
Computing Service
System 720 Network/

Communications

700 /O
750

Storage System(s)

Processing System

US 2016/0371249 A1 Dec. 22, 2016 Sheet 11 of 14 Patent Application Publication

Z08

?uaunpop qu??O 008

Patent Application Publication

840

Dec. 22, 2016 Sheet 12 of 14 US 2016/0371249 A1

842

Receive request with document
info, object type

844

Check content repository for data
of document indicated by request

845

Does data
exist?

No 846

location

848

849

Does objecin Yes
match object

type?

No
850

Cai converter to transform to
requested object type

852

Cai Ranker to rank object against
keywords

854

Return object information in order
of ranking

FG. 8B

Patent Application Publication Dec. 22, 2016 Sheet 13 of 14 US 2016/0371249 A1

900

90

Parse to extract
each object

Next Object?

Yes

image Object?

Yes

Add image instance
to cache

invoke suitable
previewer to

generate image

Add object format
8 ... d x is {..w a ... x vid instance and image

instance to cache

FG. 9

Patent Application Publication Dec. 22, 2016 Sheet 14 of 14 US 2016/0371249 A1

1000

Parameters include:
document key, object
instance id and target

application.

S-2 NSE2
Shredding
Cache

Retrieve the shredded
object from the cache

1003 invoke wrapper

Generate file with object
consumable by target

application

Generate HM document
with object image

004

F.G. 10

US 2016/0371.249 A1

DECONSTRUCTING DOCUMENTS INTO
COMPONENT BLOCKS FOR REUSE IN

PRODUCTIVITY APPLICATIONS

CROSS-REFERENCE TO RELATED
APPLICATION(S)

0001. This application claims the benefit of U.S. Provi
sional Application Ser. No. 62/182,990, filed Jun. 22, 2015.

BACKGROUND

0002 Productivity applications provide tools and plat
forms to author and consume content in electronic form,
including documents such as, but not limited to, word
processing documents, notebook documents, presentation
documents, spreadsheet documents, and webpage docu
ments. The electronic format of authoring and consuming
content via productivity applications—and in many cases
the network communication interfaces of computing sys
tems that enable communication between devices through
wired and wireless protocols, provide the unique ability to
focus on how to help a user write better content faster.

BRIEF SUMMARY

0003 Techniques and systems for facilitating content
authoring are presented. Previously generated content from
a same or different author than the user of a productivity
application can be reused. The previously generated content
can be of a same or different file type than that consumed or
generated by the productivity application. To facilitate the
content authoring, the collection of documents previously
written by the user or others can be transformed into
component objects. These objects are then made available
for retrieval as well as insertion within a productivity
application, allowing authors to reuse these objects without
leaving the application or opening a separate file and
actively copying a portion and pasting into their current
document.

0004. A document shredder is described that transforms a
document into component objects. The document shredder
may be accessed as a service by a productivity application
in order to obtain component objects of a document. The
document shredder, in response to receiving a request from
a productivity application, obtains a document indicated by
the request and applies a parser. The parser comprises logic
that understands how an object is represented in a file format
of the document, identifies boundaries of the object and any
dependent entities of the object in the document, extracts the
object and its dependent entities, and generates the compo
nent block file with a representation of the object and its
dependent entities.
0005. This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed Subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

0006 FIG. 1 illustrates an example process flow for a
productivity application facilitating content reuse.
0007 FIG. 2 illustrates an example process that may be
carried out by a document shredder.

Dec. 22, 2016

0008 FIG. 3 illustrates an example operating environ
ment.

0009 FIGS. 4A-4I illustrate a graphical user interface
and corresponding actions taken by a productivity applica
tion to facilitate content reuse.

0010 FIG. 5 illustrates an operating environment that can
support the example implementation of FIGS. 4A-4I.
0011 FIG. 6 illustrates components of a computing
device that may be used in certain implementations
described herein.
0012 FIG. 7 illustrates components of a computing sys
tem that may be used to implement certain methods and
services described herein.

(0013 FIG. 8A illustrates a simplified workflow of a
shredding service.
0014 FIG. 8B illustrates a more detailed example of the
process flow at a shredder in one implementation.
(0015 FIG. 9 illustrates a workflow of an example shred
der.

(0016 FIG. 10 illustrates a workflow of the service pro
cessing the request to get a shredded object.

DETAILED DESCRIPTION

0017 Techniques and systems for facilitating content
authoring are presented.
0018 Previously generated content from a same or dif
ferent author than the user of a productivity application can
be reused. The previously generated content can be of a
same or different file type than that consumed or generated
by the productivity application. To facilitate the content
authoring, documents can be transformed into component
objects compatible with the document format of the produc
tivity application and insertable into the user's document
without opening another window of a same or different
application.
0019 Reference to “documents' herein refers to files
containing consumable content and should not be construed
as being limited to the .doc, .docx and related file formats.
That is, the term “document” is being broadly used in place
of the term “content file' and may be in any suitable file
format.

0020. The deconstructing of the documents can be
referred to as "document shredding. A goal of a document
shredder (a module or software application that performs the
document shredding) is to identify the specific objects
within a document that are likely to be reused in others
(“reusable objects” or “component objects”). Examples of
these specific objects include images, visualizations/charts
(e.g., as available from certain spreadsheet applications),
data tables, slides, and the like. In some cases, a document
shredder performs a transformation of content into relevant
objects by looking for a set of pre-defined object types
within documents of known file format (e.g. Office docu
ments). Once these objects have been identified, the shred
der may then replicate and store these objects separately
from the Source document. The separate storage of these
objects can enable the objects to be accessed quickly from
the client application without needing to download and open
the entire original source file. It should be understood that
the separate storing of the objects would be performed as
permitted by compliance rules managing privacy and Syn
chronization. For example, in some cases, the objects may

US 2016/0371.249 A1

be stored for a duration of use of the shredder and then
deleted after sending to the source of the request for shred
ding.
0021. The transformation of the content into the relevant
objects may have been performed before or at the time of the
request to reuse content from a particular document. The
document shredder may be executed at a remote server. The
transformation of content into the relevant objects may be
performed at certain times on the remote server for later use
(or reuse). Then, the productivity application, at the client,
can fetch the components in response to a user request to
view and/or insert reusable content.

0022 FIG. 1 illustrates an example process flow for a
productivity application facilitating content reuse. The pro
ductivity application can provide an immersive experience
for the user so that the user can reuse parts of documents that
may be relevant to their work without having to leave the
productivity application (and their own document). For
example, referring to processes 100 shown in FIG. 1, in
response to receiving an indication of selection of a docu
ment for viewing within the productivity application (101),
the productivity application can obtain component objects of
the selected document (102). Here, the viewing of the
document is referring to previewing for possible insertion of
content from the document, for example in a pane or menu,
and not the case where the document is being opened using
the productivity application Such as in the case where a file
is selected for opening from within a productivity applica
tion.
0023 The step 102 of obtaining component objects of the
selected document can involve transforming selected rel
evant document content into the component objects. In some
cases, the transformation can be accomplished at the client/
productivity application by, for example, parsing the content
of the document for identifiable object blocks. In some
cases, the step 102 of obtaining component objects of the
selected document can involve requesting the component
objects for the document from a service and receiving the
component objects from the service. The service can include
a document shredder. The document shredder can transform
documents into component blocks (a file of an instance of a
component object). Indeed, in response to a request of a
client or at Some earlier time, the document shredder can
transform content of a source document into specific com
ponent objects that may be inserted into a user's document.
0024 FIG. 2 illustrates an example process that may be
carried out by a document shredder. Referring to FIG. 2, the
document shredder can identify pre-defined object types
within a source document (201). The pre-defined object
types can depend on the type of document, its content,
and/or format. In addition, the granularity of the pre-defined
object types may vary depending on implementation. There
is generally some logical atomic piece for a type of docu
ment. The "atomic' nature of the piece refers to those units
or objects from content of another document that would or
could be wholesale reused without needing to be further
split. For example, presentation documents can include
pre-defined object types indicating a slide, a title, a footer, an
image, and the like. Spreadsheet documents can include
pre-defined object types indicating graphs, data tables, and/
or groupings of cells. Word processing documents may not
have as many obvious structures indicated by the document;
however, there can exist a number of objects such as graph,
paragraph, header, image, equation, and table.

Dec. 22, 2016

0025. In any case, the document shredder may include
additional functionality for identifying portions of text using
keywords, key phrase and/or topic detection to identify
sections of the text that can relate to the context of the user's
document. Indeed, in some cases, text blocks can be
extracted that provide definitions for terms, for example, an
author may have included the text 'an acquisition is a
process where one business entity Subsumes another,” which
can be extracted and saved as part of a repository of
term-definitions that can be easily quoted by others. The
reusable object here is text, but it wasn't identified via any
simple heuristics. Thus instead of, or in addition to, identi
fying pre-defined object types within the Source document,
the document shredder can identify topics or definitions in
text in the Source document and save a copy of the text
directed to that topic as an identifiable object block for later
U.S.

0026. For example, the content of a document can be
analyzed to identify entities, topics, and key phrase extrac
tions. The key phrase extraction may be trained on a public
and/or private corpus. The content in the document may
contain various entries, such as text, words, Strings, num
bers, symbols, images and the like. An entry may be
recognizable as an entity based on various characteristics.
The analysis of the document can include searching for
recognizable entities and/or domains, for example by named
entity recognizers and dictionary look-ups. A domain is a
category for a series of entities (or items). For example, a
domain may be books. An entity refers to a concept (person,
organization, location, service, temporal, numeric, monetary
etc.) that a document (or other file) is discussing or describ
ing. In the book domain example, they entity may be a
specific book. The aspects are the properties or attributes of
the entity that are mentioned about the entity and which may
be of interest to the user. In the case of a book as an entity,
the genre or the premise/plot are examples of the aspects. It
should be understood that the term “entity” should not be
restricted to specific named entities and may refer to broad
concepts such as “sales data' or “pitch deck’.
0027. A topic is a distribution of words and that can
correspond to an aspect of an entity (and sometimes the
entity itself). A topic serves as a Subject or category of
related information. The topic of an expression can be used
for entity disambiguation (e.g., using Latent Dirichlet Allo
cation (LDA) and its hierarchical variants). Entity disam
biguation refers to the identifying of entities from text and
their labeling with one of several entity type labels. In some
cases, Wikipedia may be used as a comprehensive reference
catalog for large-scale entity disambiguation. In other cases,
other public and/or private corpus can be used to facilitate
the entity disambiguation.
0028. The identification of portions of text as component
objects may be Supplemented by identifying certain objects
in the document such as paragraph or section or change in
font.
0029. Returning to FIG. 2, the pre-defined object types
that are identified in the source document can be replicated
(202) and stored separately from the source document as
shredded component objects for a particular source docu
ment (203). The identification and replication can be per
formed by a "parser that understands the file type of the
Source document and can extract a component object. A
parser includes logic that understands a document format
and, particularly, how individual objects are represented in

US 2016/0371.249 A1

the document format. Furthermore, in addition to identifying
boundaries of an object from the data in a file, the parser
identifies dependent entities of the object that may be
located at different parts of the file. For example, in a
spreadsheet application, the parser for the spreadsheet file
type identifies, for a table, any data of cells outside the table
that are referenced by the table and extracts those data with
the table so that a component object can be replicated
without missing content.
0030 The document shredder can generate a component
block file that includes the component object and its depen
dent entities (the combination of component object and its
dependent entities may be referred to herein as simply a
component object for sake of brevity). The component block
file can be in any number of file formats. In some cases, an
image file format may be generated for use as a preview of
the object and/or for use by clients that do not support the file
format of the component block file (or one of the file formats
that the component block file can be converted to).
0031. In some cases, the shredded component objects (in
component block files) are stored on a same storage system
as the source document itself. In other cases, the shredded
component objects are stored on a separate storage system.
The shredded component objects may be stored in this
manner for later retrieval in response to a request of a
productivity application or other client. Of course, certain
implementations of the document shredder can involve an
on-demand feature where the source document is shredded
into component objects at the time of the request to obtain
the component objects.
0032. Advantageously, because the productivity applica
tion can obtain component objects of the document (either
because of functionality provided at the client or by being
provided the component objects via a service), the results
can be document type and application agnostic. That is, the
productivity application enables the user to reuse content
from a variety of content and application types (file types).
A “file type' or “file format type” refers to the different file
formats available for encoding information for storage in a
computer file. Examples of file types for “documents'
include publishing document file formats, word processing
document file formats, graphics file formats, presentation
document file formats, spreadsheet document file formats,
and webpage document file formats.
0033 Returning to FIG. 1, once the component objects
are obtained (e.g., from a manifest received by the produc
tivity application), these component objects (in the form of
a preview image instance or an object format instance) can
be displayed within the productivity application (103). In
Some cases, the component objects can be displayed in a
form that represents the content being inserted, for example
in a manner similar to the variety of available objects that are
depicted for insertion via an “insert’ menu in many produc
tivity applications. Thus, the displayed object can also
function as a graphical representation of a command to
insert the object so that in response to receiving a selection
of one or more of the displayed component objects (104), the
productivity application can insert the component object(s)
into the document (105). An example of a process by which
the component block file of a selected displayed component
object is obtained by the productivity application is
described with respect to FIG. 10.
0034. In some implementations, the productivity appli
cation can include intelligence to facilitate the insertion of

Dec. 22, 2016

the component objects within the existing layout. For
example, once the productivity application receives a com
mand to insert/import a component object (or block) into the
user's document, the component object can be transformed
into an existing format and style. For example, inserting into
a Word document can transform a component object into a
format of the active Word document.

0035 FIG. 3 illustrates an example operating environ
ment. Referring to FIG. 3, a client 301 executing process
100 may send a request 302 to a server 311. In response to
receiving the request 302, the server 311 can retrieve from
shredded objects storage 320 the appropriate reusable
objects of a source document identified by the request and
transmit the reusable objects of source document 322 to the
client 301. Server 311 can execute process 200 upon receipt
of the request 302. In some cases, server 311 may execute
process 200 at a time prior to the request 302 so that content
from Source documents can be transformed into the appro
priate reusable objects and stored in the shredded objects
storage 320. The source documents may be obtained from a
source documents storage 330.
0036. The source documents storage 330 may be located
on the server 311, on a connected enterprise server, as part
of cloud storage, etc. Similarly, the shredded objects storage
320 may be located on the server 311, on a connected
enterprise server, as part of cloud storage, etc. Although
Source document storage and shredded objects storage are
shown as separate, implementations are not limited thereto
and the source documents and shredded objects may be
stored as a whole or in part on a same storage device or
system. Moreover, not all source documents may be stored
at a same storage location. In some cases, the source
documents may be stored at various locations at both local
and remote locations (and even on the client device). In one
case where the Source document is at the client device, the
client 301 can send the document to the server 311 with the
request 302.
0037. In some cases, the server 311 first sends a manifest
of reusable objects for a document indicated in the request
302. The manifest may include thumbnail images of the
reusable objects and then, in response to a Subsequent
communication between the client 301 and the server 311
that includes an indication of one or more selections from
the available reusable objects, the server 311 can provide the
reusable object files to the client 301. The manifest can
provide a ranked list of the reusable objects, where the
objects are ranked based on any of a variety of purposes
including, but not limited to, relevancy to context, relevancy
to key words, and relevancy to a specified request of the
USC.

0038 FIGS. 4A-4I illustrate a graphical user interface
and corresponding actions taken by a productivity applica
tion to facilitate content reuse. Referring to FIG. 4A, in a
graphical user interface 400 of a presentation productivity
application, an initial state may be a blank or new presen
tation (e.g., a default state for a “new” document). For this
illustrative scenario, the user, C.B. 401, of the presentation
productivity application is writing a new Contoso company
sales memo on a presentation slide 402. The graphical user
interface for the presentation productivity application can
include a search bar 403 providing an input field for a user
to make a request to the productivity application or express
Some form of intent for using the productivity application.
The search bar 403 can receive the user's expression/request

US 2016/0371.249 A1

via a typing keyboard, a touch keyboard or display, a motion
gesture, a touch gesture, a stylus (e.g., “inking), head, eye
and gaze tracking, brain activity, or Voice input. In some
cases, the input field can be provided as part of a menu, tool
bar, task bar/pane, or other graphical user interface element
located on a same or different visual display as a content
authoring Surface of a productivity application. Although
specific implementations are described with respect to
graphical user interfaces, it should be understood that natu
ral user interface (NUI) components may be used in addition
to or in place of graphical user interface components.
0039. In this example case, the user inputs “New contoso
sales memo' 405 in the input field of the search bar 403. The
input of Such a phrase may be sufficient as a command to
obtain relevant documents or a separate command Such as
via selection of an icon, Voice input, gestural or touch input
and the like may initiate a process by the productivity
application for obtaining relevant documents. For example,
a drop down menu 420 can provide a number of actions
available to the user, including a selection of seeing related
documents 421, which may be selected (430) as shown in
FIG. 4B in order to initiate a command for the productivity
application to request relevant enterprise content. Since
there is no content in the presentation document to obtain
context, the terms input to the search bar 403 (along with
possibly some other context) may be used to generate the
request to the service.
0040. After the request for documents has been sent to
the service, the productivity application receives ranked
relevant documents from the service and these results can be
presented to the user, for example in an information pane
440 of the productivity application graphical user interface
400. It should be further understood that the process may be
initiated without an explicit user query (e.g., by an expres
sion input to the search box or highlighted from the content
in the document). For instance, a user may be able to directly
access the information pane 440 while in the middle of their
authoring process. The application may then generate a set
of relevant results based on the content that is in the
document at the time of the user's access of the information
pane 440.
0041. In the example illustrated in FIG. 4C, the informa
tion pane 440 indicates the topic 441 for the results and lists
the identified ranked results that were returned by the
service. Here, two documents are shown, one presentation
document 442 from Pradeep 443 and one spread sheet
document 444 from Bernhard 445. These results may have
been selected by the service based on the relationship of
Pradeep and Bernhard to the user C.B. combined with the
relevancy of the documents to “Contoso Sales Memo”. The
results may be based on an enterprise graph.
0042. From the information pane 440 of FIG. 4C, the user
may select (450) the FY14 Contoso report 442. The pro
ductivity application then provides an immersive experience
for inserting relevant content.
0043. For example, as shown in FIG. 4D, after the user
selects the report 442, instead of this action opening the
document, the productivity application obtains component
objects of the document that can be selected via a selection
field 460. In the example illustrated in FIG. 4D, the pro
ductivity application can transform, request already trans
formed, or have transformed (by a remote document shred
der) the presentation document of the FY14 Contoso report
442 into component objects of individual slides and even

Dec. 22, 2016

identify the slides from the main portion 452 and the
appendix 453 of the report 442. The user can easily select the
component objects presented in the selection field 460 and
reuse those objects in their own document without leaving
the productivity application. For example, the user can select
slides 454, 455, and 456 (with operations A, B, and C,
respectively) and then indicate that these slides are to be
included in their own document by operation D selecting the
command to import the objects 461.
0044) The transforming of the report 442 into component
objects of slides is a useful approach for presentation
documents; however, this type of granularity (e.g., entire
slide) may vary depending on implementation as well as the
type of document, its content, and/or format. There is
generally some logical atomic piece for a type of document
and such pieces may be presented in the form of selectable
component objects in the selection field 460. For example,
in a spread sheet document, the component objects may
include graphs, data tables, and/or groupings of cells.
0045. The spread sheet example is shown in FIGS.
4F-4H. Before illustrating the spread sheet example, in FIG.
4E, it can be seen that after the slides 454, 455, and 456 are
imported into the user's document, the user can return to the
information pane 440 from the selection field by closing the
selection field 460, for example by selecting (463) an icon
464 to exit the selection field 460. Of course, this is
illustrative of just one example graphical user interface
feature for returning to a prior state and should not be
construed as limiting.
0046. As shown in FIG. 4F, the selection pane is closed
and the information pane is shown with the ranked results of
the Contoso report 442 and the Sales overview metrics 444.
Here, the user may decide to select (470) the Sales overview
metrics 444.

0047. Then, as shown in FIG. 4G, the productivity appli
cation obtains the component objects of the document 444
and transforms the information pane 440 into a selection
field 460. In the example illustrated in FIG. 4G, the pro
ductivity application can transform, request already trans
formed, or have transformed (by a remote document shred
der) presentation document of the Sales overview metrics
444 into component objects of visualizations 472 and the
appendix 473 of the spread sheet 444. The user can easily
select the component objects presented in the selection field
460 and reuse those objects in their own document without
leaving the productivity application. For example, the user
can select visualizations graph 474 (with operation X) and
then indicate that this object is to be included in their own
document by operation Y selecting the command to import
the objects 461.
0048. When the user is done, as shown in FIG. 4H, it can
be seen that after the graph 474 is imported into the user's
document, the user can return to the information pane 440
from the selection field by closing the selection field 460, for
example by selecting (463) an icon 464 to exit the selection
field 460. Then, as shown in FIG. 4I, the user can return to
the information pane 440 (which can then also be closed).
0049 FIG. 5 illustrates an operating environment that can
support the example implementation of FIGS. 4A-4I. Refer
ring to FIG. 5, operating environment 500 may be involve a
service architecture with an application platform 501 and a
service platform 511. Local application 502 is executed

US 2016/0371.249 A1

within the context of application platform 501, while service
512 is hosted by and runs within the context of service
platform 511.
0050. Local application 502 is representative of any
Software application, module, component, or collection
thereof, capable of implementing a graphical user interface
503 such as graphical user interfaces 400 (and correspond
ing productivity applications) and performing processes
described with respect to FIGS. 4A-4I including processes
100. Examples of applications in which the described tech
niques may be provided include, but are not limited to, word
processing applications, spreadsheet applications, presenta
tion applications, web browsers, email applications, blog
ging and micro-blogging applications, social networking
applications, and gaming applications. Indeed, the described
techniques are suitable for a variety of productivity appli
cations.
0051 Examples of productivity applications include the
Microsoft Office(R) Suite of applications from Microsoft
Corp., including Microsoft Word(R), Microsoft Excel(R),
Microsoft PowerPoint(R), as well as the web application
components thereof, all registered trademarks of Microsoft
Corp.; Google Docs (and Google DriveTM); the Apache
OpenOfficeTM available from the Apache Software Founda
tion; the LibreOffice(R) Suite of applications available from
The Document Foundation, registered trademarks of The
Document Foundation; and the Apple iWorkR suite of
applications from Apple Inc., including Apple Pages.(R),
Apple KeynoteR, and Apple Numbers(R), all registered
trademarks of Apple Inc.
0052. The term “productivity application' may in some
cases by synonymous with “content authoring application”
or “content authoring tool’. Since the described systems and
techniques focus on applications and tools through which
content is being authored, there is no distinction intended
between these terms and Such terms may be used inter
changeably herein.
0053 Local application 502 may be a browser-based
application that executes in the context of a browser appli
cation. In some implementations, local application 502 may
execute in the context of or in association with a web page,
web site, web service, or the like. However, local application
502 may also be a locally installed and executed application,
a streamed application, a mobile application, or any com
bination or variation thereof. Local application 502 may be
implemented as a standalone application or may be distrib
uted across multiple applications.
0054 Application platform 501 with local application
502 can represent a client computing device with a produc
tivity application providing an authoring experience as
described herein. Application platform 501 is representative
of any physical or virtual computing system, device, or
collection thereof capable of hosting local application 502
(and capable of employing processes 100 described with
respect to FIG. 1). Examples include, but are not limited to,
Smart phones, laptop computers, tablet computers, desktop
computers, hybrid computers, gaming machines, Smart tele
visions, entertainment devices, Internet appliances, virtual
machines, wearable computers (e.g., watch, glasses), as well
as any variation or combination thereof, of which computing
system 600 illustrated in FIG. 6 is representative.
0055 Service platform 511 with service 512 can repre
sent the service that carries out the queries of a graph on
behalf of the productivity application in order to provide

Dec. 22, 2016

relevant documents (and/or component objects) to the user
of the productivity application in response to a request 520
communicated to the service 512 by the application platform
501. Service platform 511 may also include a document
shredder 513 (that can carry out processes 200).
0056 Service platform 511 can host, be integrated with,
or be in communication with enterprise resources 522 (in
cluding cloud-based resources 523) Such as contacts data
bases, Active Directory database, file storage, and the like.
Example resources include, but are not limited to Microsoft
SharePoint, Microsoft OneDrive, and Dropbox. Service 512
and/or document shredder 513 may also be able to carry out
a search of and/or retrieve content from resources local to
the application platform 501. In some cases, service plat
form 511 can further be in communication with Internet
resources 524 such as resources 525,526, and 527 available
through a search service 527, containing, for example, web
sites, web pages, contacts databases, Active Directory data
base, lists, maps, accounts, and the like.
0057 Service 512 can carry out processes to search the
available resources for relevant documents (and in some
cases other content) based on the user and the content
(having identifiable entity and topic) provided from the
productivity application (as well as the date) and provide
results 530 to the local application 502. Service 512 may be
able to search (with permission) any database that contains
content that a user may want to reuse. Similarly, Document
shredder 513 can carry out document shredding processes
for documents identified by service 512 and/or local appli
cation 502 and provide results 530 to the local application
SO2.
0.058 Service platform 511 is representative of any physi
cal or virtual computing system, device, or collection thereof
capable of hosting all or a portion of service 512. Examples
of service platform 511 include, but are not limited to, web
servers, application servers, rack servers, blade servers,
virtual machine servers, or tower servers, as well as any
other type of computing system, of which computing system
700 of FIG. 7 is representative. In some scenarios, service
platform 511 may be implemented in a data center, a virtual
data center, or some other Suitable facility. In some cases,
service platform 511 may be implemented similarly to
computing system 600.
0059. In some cases, local application 502 may be con
sidered remote from service 512 and/or document shredder
513 in that each are implemented on separate computing
platforms. In Such situations, local application 502 and
service 512 and/or document shredder 513 may communi
cate by way of data and information exchanged between
application platform 501 and service platform 511 over a
Suitable communication link or links (not shown). In other
cases, the features and functionality provided by local appli
cation 502 and service 512 and/or document shredder 513
can be co-located or even integrated as a single application.
0060 FIG. 6 illustrates components of a computing
device that may be used in certain implementations
described herein; and FIG. 7 illustrates components of a
computing system that may be used to implement certain
methods and services described herein.
0061 Referring to FIG. 6, system 600 may represent a
computing device Such as, but not limited to, a personal
computer, a reader, a mobile device, a personal digital
assistant, a wearable computer, a Smart phone, a tablet, a
laptop computer (notebook or netbook), a gaming device or

US 2016/0371.249 A1

console, an entertainment device, a hybrid computer, a
desktop computer, or a Smart television. Accordingly, more
or fewer elements described with respect to system 600 may
be incorporated to implement a particular computing device.
0062 System 600 includes a processing system 605 of
one or more processors to transform or manipulate data
according to the instructions of software 610 stored on a
storage system 615. Examples of processors of the process
ing system 605 include general purpose central processing
units, application specific processors, and logic devices, as
well as any other type of processing device, combinations,
or variations thereof. The processing system 605 may be, or
is included in, a system-on-chip (SoC) along with one or
more other components such as network connectivity com
ponents, sensors, video display components.
0063. The software 610 can include an operating system
and application programs such as a productivity application
620 providing an authoring experience such as described
herein. Device operating systems generally control and
coordinate the functions of the various components in the
computing device, providing an easier way for applications
to connect with lower level interfaces like the networking
interface. Non-limiting examples of operating systems
include Windows(R from Microsoft Corp., Apple(R) iOSTM
from Apple, Inc., Android R OS from Google, Inc., and the
Ubuntu variety of the Linux OS from Canonical.
0064. It should be noted that the operating system may be
implemented both natively on the computing device and on
software virtualization layers running atop the native device
operating system (OS). Virtualized OS layers, while not
depicted in FIG. 6, can be thought of as additional, nested
groupings within the operating system space, each contain
ing an OS, application programs, and application program
ming interfaces (APIs).
0065 Storage system 615 may comprise any computer
readable storage media readable by the processing system
605 and capable of storing software 610 including the
productivity application 620.
0066 Storage system 615 may include volatile and non
volatile, removable and non-removable media implemented
in any method or technology for storage of information, Such
as computer readable instructions, data structures, program
modules, or other data. Examples of storage media of
storage system 615 include random access memory, read
only memory, magnetic disks, optical disks, CDs, DVDs,
flash memory, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
Suitable storage media. In no case is the storage medium a
propagated signal or carrier wave and any reference herein
to "computer readable storage media' and "computer read
able storage medium’ should not be interpreted as a propa
gated signal.
0067 Storage system 615 may be implemented as a
single storage device but may also be implemented across
multiple storage devices or Sub-systems co-located or dis
tributed relative to each other. Storage system 615 may
include additional elements, such as a controller, capable of
communicating with processing system 605.
0068 Software 610 may be implemented in program
instructions and among other functions may, when executed
by system 600 in general or processing system 605 in
particular, direct system 600 or the one or more processors
of processing system 605 to operate as described herein.

Dec. 22, 2016

0069. In general, software may, when loaded into pro
cessing system 605 and executed, transform computing
system 600 overall from a general-purpose computing sys
tem into a special-purpose computing system customized to
retrieve and process the information for facilitating content
authoring as described herein for each implementation.
Indeed, encoding software on storage system 615 may
transform the physical structure of storage system 615. The
specific transformation of the physical structure may depend
on various factors in different implementations of this
description. Examples of Such factors may include, but are
not limited to the technology used to implement the storage
media of storage system 615 and whether the computer
storage media are characterized as primary or secondary
Storage.
0070 The system can further include user interface sys
tem 630, which may include input/output (I/O) devices and
components that enable communication between a user and
the system 600. User interface system 630 can include input
devices such as a mouse 631, track pad (not shown),
keyboard 632, a touch device 633 for receiving a touch
gesture from a user, a motion input device 634 for detecting
non-touch gestures and other motions by a user, a micro
phone for detecting speech (not shown), and other types of
input devices and their associated processing elements
capable of receiving user input.
0071. The user interface system 630 may also include
output devices such as display Screen(s) 635, speakers (not
shown), haptic devices for tactile feedback (not shown), and
other types of output devices. In certain cases, the input and
output devices may be combined in a single device. Such as
a touchscreen display which both depicts images and
receives touch gesture input from the user. A touchscreen
(which may be associated with or form part of the display)
is an input device configured to detect the presence and
location of a touch. The touchscreen may be a resistive
touchscreen, a capacitive touchscreen, a Surface acoustic
wave touchscreen, an infrared touchscreen, an optical imag
ing touchscreen, a dispersive signal touchscreen, an acoustic
pulse recognition touchscreen, or may utilize any other
touchscreen technology. In some embodiments, the touch
screen is incorporated on top of a display as a transparent
layer to enable a user to use one or more touches to interact
with objects or other information presented on the display.
0072 Visual output may be depicted on the display 635
in myriad ways, presenting graphical user interface ele
ments, text, images, video, notifications, virtual buttons,
virtual keyboards, or any other type of information capable
of being depicted in visual form.
0073. The user interface system 630 may also include
user interface software and associated Software (e.g., for
graphics chips and input devices) executed by the OS in
Support of the various user input and output devices. The
associated Software assists the OS in communicating user
interface hardware events to application programs using
defined mechanisms. The user interface system 630 includ
ing user interface Software may support a graphical user
interface, a natural user interface, or any other type of user
interface. For example, the interfaces for the productivity
application and/or the productivity tool for assisted content
authoring (and corresponding functionality) described
herein may be presented through user interface system 630.
0074 Communications interface 640 may include com
munications connections and devices that allow for com

US 2016/0371.249 A1

munication with other computing systems over one or more
communication networks (not shown). Examples of connec
tions and devices that together allow for inter-system com
munication may include network interface cards, antennas,
power amplifiers, RF circuitry, transceivers, and other com
munication circuitry. The connections and devices may
communicate over communication media (such as metal,
glass, air, or any other Suitable communication media) to
exchange communications with other computing systems or
networks of systems. Transmissions to and from the com
munications interface are controlled by the OS, which
informs applications of communications events when nec
essary.

0075 Computing system 600 is generally intended to
represent a computing system with which software is
deployed and executed in order to implement an application,
component, or service for a productivity tool as described
herein. In some cases, aspects of computing system 600 may
also represent a computing system on which Software may
be staged and from where software may be distributed,
transported, downloaded, or otherwise provided to yet
another computing system for deployment and execution, or
yet additional distribution.
0076 Certain aspects described herein, such as those
carried out at service platform 511 may be performed on a
system such as shown in FIG. 7. Referring to FIG. 7, system
700 may be implemented within a single computing device
or distributed across multiple computing devices or Sub
systems that cooperate in executing program instructions.
The system 700 can include one or more blade server
devices, standalone server devices, personal computers,
routers, hubs, Switches, bridges, firewall devices, intrusion
detection devices, mainframe computers, network-attached
storage devices, and other types of computing devices. The
system hardware can be configured according to any Suitable
computer architectures such as a Symmetric Multi-Process
ing (SMP) architecture or a Non-Uniform Memory Access
(NUMA) architecture.
0077. The system 700 can include a processing system
710, which may include one or more processors and/or other
circuitry that retrieves and executes software 720 from
storage system 730. Processing system 710 may be imple
mented within a single processing device but may also be
distributed across multiple processing devices or Sub-sys
tems that cooperate in executing program instructions.
0078 Storage system(s) 730 can include any computer
readable storage media readable by processing system 710
and capable of storing software 720. Storage system 730
may be implemented as a single storage device but may also
be implemented across multiple storage devices or Sub
systems co-located or distributed relative to each other.
Storage system 730 may include additional elements, such
as a controller, capable of communicating with processing
system 710. As mentioned above, any reference herein to
“computer readable storage media' and “computer readable
storage medium’ should not be interpreted as a propagated
signal.
0079 Software 720 may be implemented in program
instructions and among other functions may, when executed
by system 700 in general or processing system 710 in
particular, direct the system 700 or processing system 710 to
operate as described herein for a document shredder 745.

Dec. 22, 2016

0080. In some cases, an application programming inter
face (API) can be provided that enables aspects of the
document shredder to be available to other systems, ser
vices, and/or clients.
I0081. An API is an interface implemented by a program
code component or hardware component (hereinafter “API
implementing component’) that allows a different program
code component or hardware component (hereinafter “API
calling component') to access and use one or more func
tions, methods, procedures, data structures, classes, and/or
other services provided by the API-implementing compo
nent. An API can define one or more parameters that are
passed between the API-calling component and the API
implementing component. An API can be used to access a
service or data provided by the API-implementing compo
nent or to initiate performance of an operation or computa
tion provided by the API-implementing component. By way
of example, the API-implementing component and the API
calling component may each be any one of an operating
system, a library, a device driver, an API, an application
program, or other module (it should be understood that the
API-implementing component and the API-calling compo
nent may be the same or different type of module from each
other). API-implementing components may in Some cases be
embodied at least in part in firmware, microcode, or other
hardware logic.
I0082. The API-calling component may be a local com
ponent (i.e., on the same data processing system as the
API-implementing component) or a remote component (i.e.,
on a different data processing system from the API-imple
menting component) that communicates with the API
implementing component through the API over a network.
An API is commonly implemented over the Internet such
that it consists of a set of Hypertext Transfer Protocol
(HTTP) request messages and a specified format or structure
for response messages according to a REST (Representa
tional state transfer) or SOAP (Simple Object Access Pro
tocol) architecture. Here, a productivity application (e.g.,
620) may connect to a document shredder service (e.g., 745)
over the Internet using APIs structured using the REST or
SOAP protocols.
I0083) System 700 may represent any computing system
on which software 720 may be staged and from where
software 720 may be distributed, transported, downloaded,
or otherwise provided to yet another computing system for
deployment and execution, or yet additional distribution.
I0084. In embodiments where the system 700 includes
multiple computing devices, the server can include one or
more communications networks that facilitate communica
tion among the computing devices. For example, the one or
more communications networks can include a local or wide
area network that facilitates communication among the
computing devices. One or more direct communication links
can be included between the computing devices. In addition,
in Some cases, the computing devices can be installed at
geographically distributed locations. In other cases, the
multiple computing devices can be installed at a single
geographic location, such as a server farm or an office.
I0085. A communication interface 750 may be included,
providing communication connections and devices that
allow for communication between system 700 and other
computing systems (not shown) over a communication
network or collection of networks (not shown) or the air.

US 2016/0371.249 A1

I0086. Some examples of implementing a document
shredder for deconstructing documents into component
blocks for reuse in productivity applications are provided
with respect to FIGS. 8-10. In the example implementation
of a service that deconstructs documents into component
blocks for reuse in productivity applications, a web API
controller provides entry points for client requests. Here, the
web API controller can handle both a "shred document
request and a 'get shredded object request.
0087. A shredded object is an object extracted from a
document. For each extracted object of a document, a
preview image can also be generated. Both the original
extracted object and the preview image can be stored in a
transient cache of a separate-from-document-store shredder
or returned to a document store from which the document
was retrieved for a document management system with
integrated shredder, so when other users request on the same
document, the shredding operation can be avoided and the
data in the cache (or at the document store) can be served
directly.
0088. The shredded object can be stored (e.g., in the
transient cache) as one or more instances. For example, one
instance can be the original format of the document (e.g., for
a Word document the format may be OpenXML format).
Another instance, for example, can be an image format. The
image format instance can be used to preview a shredded
object, or, in some cases, may be used for importing when
the original format of the document is not compatible with
the user's productivity application. For example, to import a
table from a Word document into PowerPoint, the image
instance may be used if PowerPoint does not recognize the
OpenXML schema for the table.
0089. A simplified workflow of a shredding service,
particularly the shred document request, is illustrated in FIG.
8A. Referring to FIG. 8A, Client 800 sends a request (802)
to the shredding service 810 to shred a document. The
shredding service 810 can include a service handler 812–
the web API controller—and a shredder 814. This document
may be stored locally at the client, at a shared repository, in
a user's account in cloud storage, or other storage location.
The request from the client 800 can include a token that
enables the shredding service (e.g., via a web API controller)
to access the document on behalf of the user and retrieve the
document. In an example implementation, the document is
stored in a content database (document store) managed by a
document management system (Such as available from Ama
Zon Web Services, Microsoft SharePoint, Citrix ShareFile
and the like). The request to the API from the Client can
include the following parameters: document path (e.g., the
URL) or a document key (which may be used in a subse
quent request from a client for the same document), target
application (e.g., the application that will consume the
shredding result), and candidate types and formats (e.g., the
types of objects the client will accept and the format of the
files).
0090. Upon receipt of the request from the client, the web
API controller 812 can invoke the shredder (822). The
shredder 814 shreds the document data by extracting shred
ded objects from the document and generates the object file
instance of each shredded object (824). During shredding,
the shredder 814 can invoke a previewer to generate preview
images for each extracted object (that is not already an
image) (826). The previewer is used to generate the image
instance for each shredded object. The shredder can store the

Dec. 22, 2016

object file instances and the image instances (828). The web
API controller 812 sends information about shredded objects
and preview images back to client 800 (830) (e.g., as a
manifest).
0091. The response from the shredding service 810 (e.g.,
in operation 830) can include the documents shredding
manifest as items are shredded. For example, the response
can include a document key and an array of shredded objects
(where for each object, the object type and object instances
are included). An object instance Id can be part of the
manifest from the service to the client and used by the client
to retrieve data of an object instance. In one implementation,
the shredding manifest may be defined with a structure
having a token of the document (a randomly generated
GUID for security), the shredded objects of the document,
the shredded object type, the instances of the shredded
object, the Id of the shredded object instance, the format of
the shredded object instance and even a field that indicates
if there is more data. The client 800 can provide preview
images for display (832). On the user interface side, the user
may see objects as they become available (and in some
cases, popping up continuously) while the user is still able
to operate on existing objects in the graphical user interface.
This way a user does not have to wait for the entire
document to be processed before seeing anything in the
graphical user interface.
0092. At the shredder 814, a transient cache component
can be used to cache shredded objects and preview images.
Next time, when the same document is requested, data will
be retrieved directly from the cache. The transient cache has
an expiration according to compliance requirements so any
data held in the cache is deleted according to the expiration
rules. In some cases, where the shredder is integrated with
the document store and not a separate entity, the cache can
be implemented with storage associated with the document
store (and the manifest may be stored separately from the
streams for shredded objects and their previews/images).
Thus, the use of a transient cache component is based on
whether the shredder is implemented by a document store
(e.g., as a custom HTTP handler deployed inside a file
management server) or as an independent service. Where
there is a cache, the cache can be expired (and the content
deleted) when there is no more activity on a document.
(0093 FIG. 8B illustrates a more detailed example of the
process flow at a shredder in one implementation. A shred
der, such as shredder 814, can perform process 840 during
operation 824. Referring to FIG. 8B, process 840 can begin
with receiving (842) the request with document information
and object type. The document information can be used to
identify the document, for example as a document Id or a
URL. The shredder can check (844) if data of the document
exists in the content repository (e.g., the transient cache or
other storage location that stores shredded objects). A deter
mination (845) can be made regarding whether the data
exists. If the data does not exist in the content repository,
then the shredder can retrieve (846) the document from the
document location identified by the document Id or URL and
extract (848) objects from the document. The shredder can
save the objects back to the content repository.
0094. Once the objects are extracted or retrieved from the
repository in the case that the data exists in the repository (as
determined in operation 845), a determination (849),
whether the object has an appropriate object type format. If
the object does not match the requested object type, the

US 2016/0371.249 A1

shredder calls (850) a converter to transform the object to the
requested object type. For example, if an HTML format is
requested, the shredder may call the converter to convert the
object into HTML format. As another example, when con
verting between two Microsoft Office applications, the
shredder may call the converter (or a specified transformer)
to convert the shredded objects original OpenXML data
into the OpenXML data for the target application.
0095. In some cases, the shredder can call (852) a ranker
to rank the object against any keywords that the client
provides. The ranking may be carried out by a service
associated with an enterprise graph. The calling of the ranker
may occur before, in parallel with, or after calling the
converter to convert any objects that do not match the
requested object type. After ranking and converting (if
needed), the shredder can return object information in order
of ranking, and the information for each object can include
all formats that the client requests.
0096. The shredding method such as described above
creates a shredding task and return. The shredding task
extracts each shredded object from the original document,
and based on the object type, different operations will be
conducted. The results are stored into the shredding cache
(e.g., transient cache or storage associated with the docu
ment storage). FIG. 9 illustrates a workflow of an example
shredder. Referring to FIG. 9, the process flow begins 900
with the shredder parsing to extract each object of a file
(901). As each object is shredded (extracted) it is stored in
the shredding cache 910 until there are no more next objects
from the parser and the shredding ends 920. For an extracted
object, if the extracted object is an image object, then an
image instance is added (902) to the cache 910. If the
extracted object is not an image object, a Suitable previewer
is invoked to generate an image instance (903). The pre
viewer is able to render the file format of the extracted object
and therefore there may be a number of previewers for the
shredder service so that a suitable previewer can be found
for the particular file format of the document and/or object.
Both the image instance generated by the previewer and an
object format instance are added (904) to the cache 910. The
object format instance can be in the format of the original
document or in Some other consumable format. For
example, OpenXML may be used for an object extracted
from a Word or PowerPoint file. Not shown in the process
flow is the response from the service to the client.
0097. The client can retrieve data of a particular shredded
object instance via a get shredded object API. In the example
implementation, the request parameters can include the
document key, the object instance id of the shredded object
instance that was in the response of the shred document
request, and the target application. The response of a suc
cessful request is the data stream of the object instance. FIG.
10 illustrates a workflow of the service processing the
request to get a shredded object. Referring to FIG. 10, the
process flow begins 1000 with the receipt of a request that
can include a document key, object instance id and target
application. The service can use this information to retrieve
(1001) the identified shredded object from the cache 910,
and then invoke a wrapper (1002) to generate a file for
sending a data stream or image stream to the client. A
wrapper can generate the appropriate file/document from the
shredded object instance for providing to the client. In some
cases, the wrapper can generate a file with object consum
able by the target application (1003) and generate an HTML

Dec. 22, 2016

document with an object image (1004) for a case where the
object file format is not consumable by the target applica
tion. The HTML solution is useful to render and import
cross-application and cross-platform content. HTML can
provide a baseline so file formats not supported by a client
can still be shredded and their shredded objects provided to
the client.
0098. An example implementation supporting the pro
ductivity application experience shown in FIGS. 4A-4I
utilizes an enterprise graph to rank the shredded objects
(and/or to identify the documents to be shredded). For
example, the productivity application client may query a
search API of a document store to get a document list. The
search API may collaborate with an enterprise graph to get
back the most relevant documents. When a user selects a
document, the client can query the shredding service to get
shredded objects of the document. In this case, a workflow
for the shredder may be as follows.
0099 Retrieve document data from the document store
and if no manifest exists for that document or the manifest
indicates that the shredding result is not up to date: shred the
document; Save the shredded objects and the document
shredding manifest back to the content database at the
document store; request the enterprise graph (e.g., a service
associated with the enterprise graph) to rank the shredded
objects based on user context, and send the ranked list of
shredded objects to the client. If needed communicate to the
enterprise graph that objects have been created (or, when a
previous shredded object no longer exists, that the shredded
object should be deleted); and send the list of shredded
objects to the client. If the manifest exists and is up to date
when the shredder retrieves document data from the docu
ment store, the shredder can retrieve the shredded objects
from the content database (of the document store); request
the enterprise graph (e.g., a service associated with the
enterprise graph) to rank the shredded objects based on user
context, and then send the ranked list of shredded objects to
the client.

0100. At the client, the client may render the shredded
objects for a user to preview and when a user selects a
shredded object, the client can insert the object into the
current document. The client may send a signal to the
enterprise graph to indicate the object being inserted.
0101 Certain techniques set forth herein may be
described in the general context of computer-executable
instructions. Such as program modules, executed by one or
more computing devices. Generally, program modules
include routines, programs, objects, components, and data
structures that perform particular tasks or implement par
ticular abstract data types.
0102 Alternatively, or in addition, the functionality,
methods and processes described herein can be imple
mented, at least in part, by one or more hardware modules
(or logic components). For example, the hardware modules
can include, but are not limited to, application-specific
integrated circuit (ASIC) chips, field programmable gate
arrays (FPGAs), SoC systems, complex programmable logic
devices (CPLDs) and other programmable logic devices
now known or later developed. When the hardware modules
are activated, the hardware modules perform the function
ality, methods and processes included within the hardware
modules.
0103 Embodiments may be implemented as a computer
process, a computing system, or as an article of manufacture,

US 2016/0371.249 A1

Such as a computer program product or computer-readable
medium. Certain methods and processes described herein
can be embodied as Software, code and/or data, which may
be stored on one or more storage media. Certain embodi
ments of the invention contemplate the use of a machine in
the form of a computer system within which a set of
instructions, when executed, can cause the system to per
formany one or more of the methodologies discussed above.
Certain computer program products may be one or more
computer-readable storage media readable by a computer
system and encoding a computer program of instructions for
executing a computer process.
0104. It should be understood that the examples and
embodiments described herein are for illustrative purposes
only and that various modifications or changes in light
thereof will be suggested to persons skilled in the art and are
to be included within the spirit and purview of this appli
cation.
0105. Although the subject matter has been described in
language specific to structural features and/or acts, it is to be
understood that the subject matter defined in the appended
claims is not necessarily limited to the specific features or
acts described above. Rather, the specific features and acts
described above are disclosed as examples of implementing
the claims and other equivalent features and acts are
intended to be within the scope of the claims.
What is claimed is:
1. A system for deconstructing documents for ease of

authoring content in productivity applications, comprising:
a processing system;
a document shredder stored on one or more computer

readable storage media, the document shredder direct
ing the processing system to:

in response to receiving a request for components of a
Source document, obtain the Source document, apply a
parser to transform content of the source document into
component blocks,

wherein the parser comprises logic that understands how
an object is represented in a file format of the source
document, identifies boundaries of the object and any
dependent entities of the object in the Source document,
extracts the object and its dependent entities, and
generates a component block file with a representation
of the object and its dependent entities.

2. The system of claim 1, wherein the document shredder
further directs the processing system to replicate the com
ponent blocks; and store the component blocks separate
from the source document.

3. The system of claim 2, further comprising a transient
cache in which the component blocks are stored.

4. The system of claim 1, wherein the document shredder
further directs the processing system to provide a component
block file to a source of the request for components of the
Source document in response to receiving the request for
component of the Source document.

5. The system of claim 1, wherein the document shredder
further directs the processing system to, in response to
receiving the request for component of the Source document,
generate a manifest including a list of the component blocks;
and provide the manifest to a source of the request.

6. The system of claim 5, wherein the document shredder
directs the processing system to provide a component block
file to the source of the request in response to receiving an

Dec. 22, 2016

indication of a selected component block from the list of the
component blocks provided in the manifest.

7. The system of claim 1, wherein the document shredder
further directs the processing system identify text blocks
directed to a particular topic within the source document;
replicate any identified text blocks; and store the identified
text blocks separately from the source document.

8. A method for facilitating content authoring in produc
tivity applications, the method comprising:

in response to receiving an indication of a selected
document from a set of results of reusable content
provided to a productivity application, obtaining com
ponent objects sourced from the selected document and
displaying the component objects in a selection field
within the productivity application; and

in response to receiving an indication of one or more
Selected component objects via the selection field,
inserting the one or more selected component objects
into a document of the user.

9. The method of claim 8, wherein the documents iden
tified in the set of ranked results comprise documents of at
least two file types.

10. The method of claim 8, wherein obtaining component
objects sourced from the selected document comprises:

transforming content of the selected document into com
ponent objects by applying a parser, wherein the parser
comprises logic that understands how an object is
represented in a file format of the selected document,
identifies boundaries of the object and any dependent
entities of the object in the selected document, extracts
the object and its dependent entities, and generates the
component objects from a representation of the object
and its dependent entities.

11. The method of claim 8, wherein obtaining component
objects sourced from the selected document comprises:

requesting the component objects for the selected docu
ment from a service providing a document shredder;
and

receiving the component objects in an image format from
the service.

12. The method of claim 11, wherein in response to
receiving the indication of the one or more selected com
ponent objects via the selection field, the method further
comprising:

requesting an object format instance of the one or more
Selected component objects from the service providing
the document shredder; and

receiving the one or more selected component objects in
the object format instance from the document shredder.

13. The method of claim 12, wherein a file format of the
object format instance is different than a file format of the
file type the selected document.

14. The method of claim 11, wherein inserting the one or
more selected component objects into the document of the
user comprises inserting at least one of the one or more
selected component objects in the image format into the
document.

15. One or more computer readable storage media having
instructions stored thereon that when executed by a process
ing system, direct the processing system to:

display a graphical user interface for a productivity appli
cation;

in response to receiving ranked results identifying rel
evant documents, display a representation of one or

US 2016/0371.249 A1

more of the relevant documents in an information pane
of the graphical user interface; and

in response to receiving, via the information pane of the
graphical user interface, an indication of a selection of
one of the one or more of the relevant documents,
obtain component objects sourced from the one of the
at least one relevant document and display the compo
nent objects in a selection pane of the graphical user
interface.

16. The media of claim 15, wherein the instructions that
direct the processing system to obtain the component objects
sourced from the one of the at least one relevant document
direct the processing system to communicate a request to get
the component objects from a remote server, the request at
least comprising a target application indicating the produc
tivity application.

17. The media of claim 15, wherein the instructions that
direct the processing system to obtain the component objects
sourced from the one of the at least one relevant document
direct the processing system to transform the content of the
one of the at least one relevant document into component
objects by applying a parser, wherein the parser comprises
logic that understands how an object is represented in a file
format of the at least one relevant document, identifies
boundaries of the object and any dependent entities of the
object in the document, extracts the object and its dependent

11
Dec. 22, 2016

entities, and generates the component objects from a repre
sentation of the object and its dependent entities.

18. The media of claim 15, wherein the relevant docu
ments comprise documents of at least two file types.

19. The media of claim 15, further comprising instruc
tions stored thereon that when executed by the processing
system, direct the processing system to:

in response to receiving an indication to import a selected
one or more of the component objects in the selection
pane of the graphical user interface, inserting the
Selected one or more of the component objects into a
document opened with the productivity application.

20. The media of claim 19, further comprising instruc
tions stored thereon that when executed by the processing
system, direct the processing system to, in response to
receiving the indication to import the selected one or more
of the component objects in the selection pane of the
graphical interface, further:

request an object format instance of the selected one or
more of the component objects from a service provid
ing the document shredder, and

receive the selected one or more of the component objects
in the object format instance from the document shred
der, the selected one or more of the component objects
being inserted in the object format into the document.

k k k k k

